Math Logic: Model Theory \& Computability
Lecture 09
simple
Examples (continued). (b) The theory of vulisected graphs without loops in the signature of yraples $\sigma_{\text {glyph }}:=(E)$ is UCRAPHS:
(i) $\forall x \forall y\left(x E_{y} \rightarrow y E_{x}\right)$
(ii) $\forall x(\neg x \in x)$
(c) Recall that a (simple) graph $G:=(V, E)$ is called bipartite if V admits a partition $V=V_{1} \cup V_{2}$ sch that there we no edges between the vertices in V_{i}, for $i=1,2$. Egaivalectly, G admits a popper colouring wite 2 colours; 1 and 2. (A proper whoring of a graph with n colours is a taction $c: V \rightarrow \bar{n}:=\{0,1, \ldots, n-1\}$ such hat adjacent vertices get different colours.)

Is the clans of bipartite graphs axionadizable? Just foo the clefinction it seems like not become we would need to express "there is a sabset $V_{1} \subseteq V$ sch that blablabla...". However, there is an equivalent sortition to bipartiteweng tact is first-orche expressible:

Prop. A graph is bipartite if and only if it has no odd cycles. Neeof. \Rightarrow. Straightforward bone add cycles ane ot 2 -colourable.
es. If we odd giles, x e can colour the graph as follows: choose a stantizy point too each wongonent, colour it red, teen its neighbours blue, then their new neishboacs red, and so on. We will never reach a situation where a vertex is a neighbor r of both a blue and a red vertex bear this implies an odd agile.

Wring this, the theory BIPGRAPHS:= UGRAPHS $\cup\left\{\neg \varphi_{2 k+1}: k \in \mathbb{N}^{+}\right\}$anima-
tizes the clan of bipartite graphs, where for $n \geqslant 2, \varphi_{n}$ says that thare is a sinple (no repected vertices) cycle of leajth n :

$$
\varphi_{n}:=\exists x_{0} \exists x_{1} \ldots \exists x_{n}\left[\left(\bigwedge_{i=0}^{n} x_{i} E x_{i+1}\right) \wedge\left(x_{0}=x_{n}\right) \wedge\left(\bigwedge_{0 \leq i<j<n} x_{i} \neq x_{j}\right)\right] .
$$

(c) In the signatine $\sigma_{p_{0}}:=(\leq)$, the theory $P O$:
(PO1) $\forall x(x \leq x)$
(PO2) $\forall x \forall y((x \leq y \wedge \quad y \leq x) \rightarrow x=y)$
(PO3) $\forall x \forall, \forall z((x \leq y \wedge y \leq z) \rightarrow x \leq z)$
axionatizes the dom of partial orclers. Adding
(LO) $\forall x \forall y \quad(x \leq y \vee y \leq x)$
axionctizey the clam of linear orders. Howaver, there is ur axionatiaction for the can of well-erclers, namely those linene orders in ahich every nonempty sabset has a minimum.
(d) In $\sigma_{y \cdot p}:=\left(1, \cdot,()^{-1}\right)$, the theorn cxiouctizing all groups is GROups: (GPI) $\forall x \forall y \forall z(x \cdot y) \cdot z=x \cdot(y \cdot z)$
(GP2) $\forall x(1 \cdot x=x \wedge x \cdot 1=4)$
(GP3) $\forall x\left(x \cdot x^{-1}=1 \wedge x^{-1} \cdot x=1\right)$.
We conld also axiomatize sroups woong all $\sigma_{\text {sypp }}:=($.$) -stencheres: (Gpi)$ stays the same while (GP2) and (GP3) are ceplaced with
$\left(C P 2^{*}\right) \exists v \forall x(v \cdot x=x \wedge x \cdot v=x)$
($\left(P \cdot 3^{*}\right) \exists_{v} \forall x \exists y\left(v \cdot x=x \wedge x \cdot v=x \wedge_{x} \cdot y=v \wedge y \cdot x=v\right)$.
We con also axinctize abelian groops, bat the clanes of cyclic sroups (i.e. 1-jenerated) and nou-yclic jranps we not axiomatizable. Incleed, cyclic yooups we those in hich $\exists x \forall y($ there is $n \in \mathbb{N})(\underbrace{(x \cdot x \cdot \ldots \cdot x}_{n}=y \vee \underbrace{x^{-1} \cdot x^{-1} \cdot \ldots \cdot x^{-1}}_{n}=y)$.
(e) Sinilarly in the signatire $\left.\sigma_{\text {ring }}:=(0,1,+,-1), \cdot\right)$ we chtine the theos RINGS aycourtizing h dan of ringes.
(f) In the sane signctare Geng, bet FIELDS be the theor RINGS to yether with (FLD1) $\forall x\left(x \neq 0 \rightarrow \exists_{y}\left(x \cdot y=1 \wedge_{y \cdot x}=1\right)\right.$

$$
(F(D 2) \forall x \forall y \quad(x \cdot y=y \cdot x)
$$

(g) For a prine nwwher $p \in \mathbb{N}^{+}$, the theong of fiedds of dharachacistic p is FIELDS $_{p}:=$ FIELDS $\vee\{\underbrace{1+1+\ldots+1}_{p \text { times }}=0\}$.
Also, the fields of dearacteciztic O are axionctize d by

$$
\text { FIFDDS }:=F I E C D S \cup\{\underbrace{1+1+\ldots+1}_{p \text { times }} \neq 0: p \in \mathbb{N} \text { is prine }\} \text {. }
$$

(h) The theong ACF axionatizes the clam of algebracically closed tields: ACF:= FIELDS V the follocing infitely many axions: for each $n \in \mathbb{N}^{+}$,

$$
\varphi_{n}:=\forall u_{0} \vee u_{1}, \ldots \forall u_{n}\left(u_{n} \neq 0\right) \exists_{x}\left(u_{0}+u_{1} \cdot x+\ldots+u_{n} \cdot x^{n}=0\right) \text {, }
$$

Chre $x^{k}:=\underbrace{x \cdot x \cdot \ldots \cdot x}_{k}$. A well-keran -ockl of $A C F$ is the field of couplex umbers, but there are conutcble moclels too, e.g. The alyebenic closing of tinite tields or of (DD.
We also denote by $A C F_{p}$, for p prime or 0 , the theorg ACF UFIELDS p of algebraically losed tields of characturiticp.
(i) lastly, the theon of sets, called ZFC (= Zerwilo-Fcaenkel set theery with Choice), is an intinite theery in the signatane $\sigma_{\text {e1: }}:=(\epsilon)$, where ϵ
is a binary rel. spabol, chose axioms state chen tao sets are equal, the existence of pairs, unions, definable sachets, powerset, an infinite sod, and a couple move technical axioms, bogetener with axiom at Choice. The list is a bit boo lou bo give here, bat can be found online, o.j. in my 20-page lecture wotes "A arch intro to basic set Reorg" far undergraduates, available or our course webpage.

Important examples of theories wan from concrete σ-stancures:
Def. The theory of a σ-structure $A:=(A, \sigma)$ is the sot

$$
\operatorname{Th}(A):=\{\varphi \in \text { Sentences }(r): \underline{A} \neq \varphi\}
$$

of all σ-sectecus true in A.
Although theories of stentsures we really the uncin object of stuck in model theory, in the rest of a a themafies, the are ty pically not useful rice we can't usually tell mich sentences are in $\operatorname{Th}(\mathbb{A})$ bor a structure \mathbb{A}.

Example. For the stanctire of arithmetic $N:=(\mathbb{N}, 0,5,+$,), we (humans) still don't know whether the sentences are in $T h(N)$ or wot:

$$
\text { GOLD BACH: }=\forall x(\operatorname{div}(2, x) \rightarrow \exists y \nexists z(\text { prime }(y) \wedge \text { prime }(z) \wedge x=y+z)
$$

and

$$
\exists z(x+z=y)
$$

$$
\text { TWIN PRIME }:=\forall x \exists y(\overbrace{y \geqslant x}^{\|} \wedge \text { prime }(y) \wedge \operatorname{prime}(S(S(y)))) \text {. }
$$

